Роль молекулы ДНК в бактериальной клетке: просто о сложном


Долгое время ученые всего мира вели жаркие дискуссии относительно того, какой структурой в клетке бактерий обладает молекула ДНК, и где содержится вся наследственная информация. Произведя множество опытов, они все же пришли к выводу, что генетический код зашифрован в молекулах ДНК. Но в отличие от многоклеточных организмов их структура имеет свои особенности.

Строение бактериальной клетки: плазмиды

Главная структурная единица всего живого

Колоссальное многообразие животного мира на планете поражает воображение. Нет такого уголка на Земле, где не существовали бы маленькие и большие существа. Жаркие пески пустынь, холодные льды Арктики, глубоководные впадины океанов – их можно встретить повсюду. Но, как ни странно звучит, все они имеют общую структурную единицу – клетку.

У одноклеточных все функциональные элементы организма помещены в одну-единственную клетку. К их числу принадлежат:

  • бактерии;
  • ряд грибов:
  • простейшие;
  • сине-зеленые водоросли.

Разнообразие одноклеточных организмовОстальные организмы имеют многоклеточную структуру. Клетки четко взаимодействуют между собой и формируют внутренние органы, соединительные ткани или структуры. Например, в человеческом организме их насчитывается более 3 тысяч миллиардов. Благодаря их слаженной работе человек жизнеспособен.

Размер клеточек очень мал и составляет меньше 1 мм. Впервые обнаружить тот факт, что организмы имеют клеточное строение, удалось 300 лет назад. Изобретение первого микроскопа значительно упростило изучение структурных единиц.

Живая клетка, несмотря на свои микроскопические размеры, имеет сложное строение:

  • мембрана:
  • цитоплазма;
  • ядро.

Строение бактерильной клеткиОтличительной чертой бактериальной клетки является то, что у нее нет четко оформленного ядра. Поэтому бактерии и сине-зеленые водоросли относятся к отдельному классу прокариотов.

Секретная генетическая информация

Вся наследственная информация закодирована в дезоксирибонуклеиновой кислоте (ДНК). Именно в ней содержится инструкция, определяющая рост, деление и функциональность клеток. Например, несмотря на очень маленькие размеры, для бактерий характерно достаточное разнообразие форм:

  • шаровидная;
  • палочковидная;
  • изогнутая;
  • закручена в тройную спираль.

И благодаря генетической информации, заключенной в спирали ДНК, дочерние клетки будут принимать форму материнской. Природа так методично отработала механизм размножения, что практически нет сбоев. В процессе деления образуется дочерняя спираль, которая идентична по своей хромосомной структуре материнской. Процесс этот называется репликацией.

Возможность размножаться – это ведущее свойство клетки. Чтобы качественно выполнять возложенную на нее функцию, она должна иметь достаточно сложное строение. На деле так оно и есть – каждая молекула содержит в себе более 1000 различных соединений.

В процессе деления простые молекулы превращаются в сложные молекулярные комбинации, используя энергию при питании. Бактерии получают свою долю энергетического заряда от расщепления органических веществ, а растения – неорганических.

молекула ДНКВнутри молекул химические реакции происходят сами по себе достаточно медленно. Поэтому, чтобы живые организмы на Земле не прекратили свое существование, молекулы оснащены специальными катализаторами (ферментами). К сожалению, универсального фермента нет, и каждый отвечает только за проведение определенной химической реакции.

Бактериальные особенности шифрования

Основное скопление спиралей ДНК у бактерий находится в большой кольцевой молекуле. Называется она бактериальной хромосомой.

Но, кроме того, бактериальная клетка снабжена немалым количеством очень мелких кольцевых молекул ДНК под названием плазмиды. Они способны не только размножаться, но и передаваться другим микробам. Лучше всего изучены современной наукой плазмиды, которые несут информацию об устойчивости к медикаментам. В частности, информация о невосприимчивости микроорганизмов к тем или иным антибиотикам помогает разрабатывать действенные лекарственные препараты.

Молекула ДНК – двойная спираль. Это полимер, который представляет собой две спирально закрученные между собой цепи, объединенные водородными связями. Звенья цепи состоят из более простых соединений:

  • азотистого основания;
  • сахара дезоксирибозы;
  • остатка фосфорной кислоты.

молекула ДНКЕсли молекулу ДНК развернуть, то ее длина будет по величине превосходить бактериальную клетку в 1000 раз. В течение длительного промежутка времени считалось, что у бактериальной спирали ДНК нет четкой организации, и все нити хаотично сплетены в большой клубок. Но научные эксперименты показали, что на самом деле бактериальные хромосомы имеют четко упорядоченное устройство. Иначе процесс репликации и последующее рассредоточение хромосом по дочерним клеткам были бы невозможны.

Защитная система «стоп-вирус»

Казалось бы, нет злоумышленников, которые могут атаковать такую крошку, как бактерия. Нет врага, способного поселиться внутри одноклеточного организма. Оказывается, есть. И называется он вирусом.

Этот инфекционный агент не имеет оформленной клеточной структуры и может вести активную жизнедеятельность только внутри живых клеток. В том числе и внутри бактерий.

Внедрение вируса происходит следующим образом. Он прикрепляется к бактериальной мембране, пробивает ее и впрыскивает в середину свою ДНК.

Тщательные научные эксперименты показали, что пробить клеточную оболочку для вируса не составляет никакого труда благодаря своеобразному буру. Он представляет собой белковое копье с наконечником из иона железа.

Нуклеиновая кислота, впрыснутая вирусом, молниеносно распространяется по всему микроорганизму. Вирусные частички очень быстро разрушают его. И если бы отсутствовал защитный механизм, то бактерия очень быстро погибла.

«Малыши» выработали свою охранную систему, которая называется бактериальным иммунитетом. С ее помощью микроорганизм фиксирует все данные касательно вирусов. Впоследствии он использует ее для обороны от атакующих противников.

Бактериальная хромосома имеет четкую последовательность спирали ДНК, где определенные участки попеременно повторяются. Если иммунная защита обнаруживает присутствие в клетке чужеродной ДНК, то включается механизм уничтожения пришельца. Разрушение вражеского компонента происходит с помощью особого белкового комплекса.

строение бактерииВсякая система может иногда давать сбои. Нет исключений и у иммунной защиты бактерий. Иногда ДНК вируса повреждает спираль ДНК микроба, и возникает так называемое аутоиммунное заболевание. Справедливости ради следует отметить, что такие инциденты достаточно редки и являются скорее исключением из правил.

Вездесущие микроорганизмы в генной инженерии

Генная инженерия только начинает внедряться в нашу реальность. Тем не менее уже достигнуты достаточно ощутимые результаты, которые качественно улучшают человеческую жизнь. Например, синтетическим путем получен такой жизненно важный препарат, как инсулин.

генная инженерияНе остались в стороне от научно-технического прогресса и крошки-бактерии. Дело в том, что основная часть работы проводилась именно на спиралях ДНК этих микроорганизмов.

В бактериях наследственная информация накапливалась в течение миллиардов лет. В переданных из поколения в поколение данных практически нет изменений. Бактериальные плазмиды можно перенести из одной молекулы в другую, не исказив исходных данных. Так, гены, отвечающие за устойчивость к антибиотикам, при внедрении в микрофлору кишечника значительно увеличивают ее жизнеспособность в неблагоприятных условиях.

Одним из феноменальных достижений генной инженерии стал синтез противовирусного препарата «Интерферон». Человеческий организм выделяет этот белок при попадании в него вирусной инфекции. Но при осложненном течении заболевания естественного интерферона может быть недостаточно. И тогда на помощь человеку придет синтезированная форма препарата.

интерферонЗапустить «Интерферон» в массовое производство помогли именно бактерии. Посудите сами: из одного литра бактериальной культуры получается такое количество препарата, на которое бы потребовались тысячи литров человеческой крови.

Разработки генных инженеров идут дальше. Уже проводятся работы по конструированию генов, носящих противоопухолевый код. Генная терапия применяется при лечении наследственных заболеваний.

Не обделили своим вниманием ученые и сельское хозяйство. Проводятся работы по созданию новых кормовых культур, которые, например, увеличивают надои молока. Разработана вакцина, которая не дает возможности вирусу герпеса атаковать поголовье домашнего скота и свести на нет все усилия животноводов.

И во многом своими достижениями человек обязан крошечным бактериям. Невидимые помощники оказывают неоценимую услугу человечеству в борьбе с такими подлинными трагедиями, как недостаток пищи или заболевания, калечащие и уничтожающие людей.

Похожие статьи:
Загрузка...

__________________________

Остались вопросы? Задайте их в комментариях к статье, мы обязательно ответим