Различные стороны клеточного строения жизни на планете – бактерий, растений и животных


Все живое на планете состоит из клеток, а в случае бактерий одна клетка является полноценным живым организмом. И как растения, животные и бактерии отличаются друг от друга по внешнему виду и строению, так и их клетки различаются между собой. Исключение составляют фаги – вирусы, которые являются примером неклеточной жизни.

строение клетки

Ключевые вехи развития клеточной теории

Сам термин «клетка» впервые применил в 1665 году Р. Гук («Микрография») при описании структуры пробки.

В 70-е годы 17 века М. Мальпиги и Н. Грю исследовали клеточное строение растений.

В это же время А. Левенгук открыл и описал бактерии – одноклеточные организмы.

Антоний Левенгук

Исследование в 17 и 18 веках носило эпизодический характер, и в связи с несовершенством микроскопов возникало множество ошибочных предположений о клеточном строении.

В 19 веке теория о клеточном строении организмов получила дополнительное подтверждение, что явилось следствием конструктивного усовершенствования оптических микроскопов, в частности использования ахроматических линз.

Ф. Линк и Молднхоуэр на примере растений доказывают, что клетка является обособленной структурой организма, Ф. Мейен описывает клеточный обмен как процесс, самостоятельный для каждой клетки.

Значительный вклад в создание клеточной теории сделал Пуркинье и его ученики. Они проводили исследования животных тканей, в частности тканей человека, и сопоставляли полученные данные с имеющейся информацией по растительным клеткам. Я. Пуркинье первым открыл и описал протоплазму клетки (1825 г.) Однако вывод о гомологии клеток растений и животных в то время сделан не был.

Изучение микробов в лаборатории

Р. Броун в 1831 году впервые описал клеточное ядро и выдвинул предположение, что оно является частью клетки растений.

В 1838 г. немецкие ученые М. Шлейден (ботаник) и Т. Шванн (зоолог) независимо друг от друга пришли к идее, что живой организм (у М. Шлейдена – растение, а у Т. Шванна – животное) состоит из отдельных клеток.

Опираясь на разработки своих предшественников, М. Шлейден и Т. Шванн сформулировали основы клеточной теории (1838-39 гг.) живых организмов – бактерий, растений и животных.

Основные положения теории М. Шлейдена и Т. Шванна

Важнейшее значение в изучении и понимании процессов в живых организмах имели следующие положения выдвинутой теории:

  • все живые организмы состоят из клеток;
  • рост растений и животных происходит в результате размножения клеток.

Значимый вклад в развитие клеточной теории внес (1858 г.) Р. Вирхов, выдвинув положение, что клетка бактерий, растений или животных возникает только из клетки, и других возможностей не существует.

Макет бактерии

Современная теория является развитием положений М. Шлейдена и Т. Шванна, опирающимся на возросшие технические возможности. Она включает в себя следующие ключевые положения о клетке:

  • она является элементарной единицей практически всех живых организмов, исключение составляют неклеточные формы – вирусы;
  • у бактерий, растений и животных они гомологичны (сходны по основным свойствам и отличаются по второстепенным);
  • размножаются путем деления, то есть новые клетки всегда возникают из предыдущих клеточных тканей.

Все живое состоит из клеток. В свете этого постулата ученые не пришли к единому мнению, следует ли считать фаги (вирусы) живыми организмами, ведь основные признаки живого (размножение, обмен веществ и др.) у них отсутствуют и могут проявляться лишь в чужом организме, а сами фаги являются вне ее лишь достаточно сложным химическим соединением.

По своей сути, фаги являются облигатными (не живут вне тела хозяина) паразитами. Они распространены так же широко, как и все другие организмы – воздух, водоемы и суша населены не только ядерными и доядерными формами жизни, но и фагами, которые могут поражать как прокариотов, так и эукариотов.

Строение и внешний вид бактериофага

Фаги являются самой распространенный формой органической материи – в водоемах их содержится огромное количество – в 1 мл воды насчитывается до  единиц фагов.

Известно, что вирусы могут поражать не только бактерии, такие фаги называют бактериофагами, но и всех эукариотов – растения, грибы и животных. Таким образом, роль фагов становится очевидной – они являются важным звеном в механизме регуляции численности всего живого на планете.

Доядерные и ядерные формы жизни

Все живое можно разделить на 2 группы:

  • прокариоты (бактерии и архебактерии);
  • эукариоты (растения и животные).

Прокариоты и эукариоты

Несмотря на общее происхождение, клетки бактерий имеют не так много схожих признаков с растениями и животными, к ним относятся:

  • наличие наружного замкнутого слоя – фосфолипидной мембраны;
  • присутствие наследственного материала – рибосомы и хромосомы.

Строение прокариотических и эукариотических клеток, представленное как сравнительная характеристика, наглядно показано в таблице:

Свойство Доядерные (прокариоты) Ядерные (эукариоты)
Размер 2-10 мкм 10-100 мкм
Форма клетки Для различных видов бактерий характерны свои формы – они могут быть круглыми (кокки), палочковидными или спиралевидной формы (спириллы и вибрионы) Клетка растения имеет фиксированную прямоугольную форму, а для животных характерна неправильная округлая форма
Наличие капсулы Присутствует у отдельных видов; не является характерной чертой прокариотов Отсутствует
Клеточная стенка Присутствует у всех бактерий Характерно наличие у растений и грибов, а у животных отсутствует
Плазматическая мембрана Есть Есть
Ядро клетки Нет Есть
Хромосомы Как таковых хромосом нет; генетический материал содержит нуклеоид – закольцованная спаренная молекула ДНК; линейные молекулы ДНК редко встречаются у прокариотов Нуклеопротеидные структуры ядра эукариотов, являются носителем генетической информации; кариотип – совокупность всех хромосом клетки – является специфическим признаком конкретного вида и не подвержен индивидуальным изменениям
Тип деления Прямое Митоз
Наличие пилей Есть Нет
Органеллы перемещения Есть – жгутики и реснички Есть у всех эукариотов (ундулиподии, закрепленные с помощью кинетосом), кроме грибов

Клеточное строение усложняется от прокариотов к эукариотам. Если организм бактерии состоит из одной клетки, то организмы высших животных, в частности человека, состоят из .

Химический состав

Важной характеристикой живой клетки является ее химический состав.

Клеточное вещество бактерий, растений и животных представляет собой сложный двухфазный коллоид:

  • цитоплазматический матрикс, способный переходить от жидкого до твердого агрегатного состояния;
  • мембранная система, выполняющая роль более жидкой составляющей.

Химический состав бактериальной клетки

Элементарный клеточный состав насчитывает более 70 единиц и в процентном соотношении по убыванию распределяется следующим образом:

  • кислород – 65%;
  • углерод -18%;
  • водород — 10%;
  • азот — 3%;
  • кальций, калий, фосфор, хлор и сера.

Данная группа химических элементов присутствует всегда в значительном количестве и носит название макроэлементов.

Микроэлементы, такие как медь, марганец, селен, кобальт и другие, также являются обязательной частью клетки, но необходимы в малых количествах.

Химические элементы присутствуют не в виде молекул чистого вещества – они образуют различные органические и неорганические соединения, имеющие свою роль в процессе жизнедеятельности организма.

Неорганика организмов

Исключительное значение для жизнедеятельности любой формы – бактерий, растений, грибов или животных – имеет вода.

Строение бактериальной клетки

Это неорганическое соединение является:

  • средой для проведения реакций;
  • растворителем химических веществ;
  • частью механизма выведения продуктов обмена;
  • гарантом стабильного температурного режима прокариотов и эукариотов.
    Кроме воды, в структуре присутствуют минеральные соли, они являются частью клеточной протоплазмы.

Органические соединения

Основными органическими соединениями, участвующими в строении и жизнедеятельности организмов бактерий, растений, грибов и животных, являются углеводы (простые и сложные), липиды, стероиды, белки, АТФ и нуклеиновые кислоты.

Нуклеоид бактериальной клетки

Роль биологических молекул в живых организмах заключается в следующем:

  • углеводы (соединение углерода, водорода и кислорода) являются составной частью мембранных систем и важнейшим энергетическим источником;
  • липиды (соединение спиртов и жирных кислот) играют роль накопителей энергии;
  • стероиды – данные вещества являются гормонами;
  • белки – сложные соединения со значительной молекулярной массой; являются строительным материалом, а также катализаторами, гормонами, токсинами и антителами, вследствие деструкции становятся источниками энергии;
  • АТФ – осуществляет обмен энергии и вещества, является источником энергии для биохимических процессов;
  • нуклеиновые кислоты – ДНК и РНК – являются носителями генетической информации.

Методы изучения клеточной структуры

В связи с микроскопическими размерами изучение строения клеток стало возможным только с появлением микроскопов.

микроскопический метод

Современная наука использует для исследования цитопроцессов системно-структурные методики, объединяющие микроскопическую технику и цитологические исследования.

Для изучения процессов в клетках бактерий, растений, грибов и животных используются следующие техники микроскопирования:

1. Световая – используются оптические микроскопы, разрешающая способность до 105 крат (проекция на экран); имеет модификации:

  • фазово-контрастная – используются оптические микроскопы для получения изображений прозрачных объектов;
  • ультрафиолетовая и инфракрасная – оптические микроскопы оснащаются флуоресцентными экранами, объекты изучают в УФ- или ИК-частях спектра;
  • люминесцентная – метод основан на появлении люминесценции под воздействием УФ-излучения.

2. Электронная – применение сканирующих электронных микроскопов позволило получить трехмерное изображение клетки, а дополнительное использование замедленной киносъемки дало возможность записать процесс жизнедеятельности самой клетки.

Выращивание бактерий в чашке Петри

 

Цитологические исследования используют цитохимические методы – избирательное окрашивание определенных участков цитоплазмы, а также методики авторадиографии – введение радиоактивных изотопов водорода, фосфора или углерода в клетку и отслеживание их на фотоэмульсиях.

Цитологи способны выделить отдельные компоненты клетки методами дифференциального центрифугирования. Применение при анализе хроматографов позволяет разделить биологические молекулы, а их пространственное расположение определяют методами рентгеноструктурного анализа.

Особенности размножения прокариотов и эукариотов

Сравнительная характеристика процесса пролиферации (размножения) доядерных и ядерных организмов выявляет различные процессы, протекающие при размножении в клетках прокариотов и эукариотов.

Размножение безъядерной клетки осуществляется простым делением на 2 равноценные по размеру и составу части, каждая из которых является носителем одинаковой генетической информации.

Схема деления прокариотической клетки

Эукариотические клетки размножаются по одному из двух механизмов:

  • митоз – непрямое деление, основное для ядерных форм; происходит деление ядра с образованием родительского набора хромосом в каждом из дочерних ядер, далее происходит деление самой клетки;
  • мейоз – деление клетки с уменьшением хромосомного набора вдвое – образуются гаметы, при оплодотворении происходит слияние гамет, новый организм имеет полный набор хромосом.

Независимо от того, является клетка прокариотом или эукариотом, она всегда связана с жизнью. В отсутствии клетки жизни не существует.

В Вашем организме живут паразиты?

В повседневной жизни так легко "подцепить" паразитов, ведь контакт с ними просто неизбежен, особенно если вы часто пользуетесь общественным транспортом, посещаете людные места, да и просто находитесь на улице.

Симптомами появления паразитов в организме могут быть: 

  • частые простуды, ОРЗ, болезни горла, кашель;
  • аллергия, непрекращающийся насморк, покраснения глаз;
  • кожная аллергия, зуд, экземы;
  • бородавки и папилломы;
  • головные боли, а также различные боли и спазмы во внутренних органах.

Если вы чувствуете частые недомогания, вам просто необходимо провести чистку организма. Как это сделать, читайте рекомендации паразитолога доктора Рыкова.

 

Все статьи на сайте носят исключительно ознакомительный характер. В статьях, описывающих ту или иную болезнь, нет призыва к действию. Если Вы обнаружили у себя подобные симптомы, Вам обязательно необходимо обратиться к врачу! Самолечение может быть опасным для Вашего здоровья!

Копирование материалов с сайта возможно только при использовании прямой активной ссылки на сайт proBakterii.ru. Фото и видео материалы не являются собственностью сайта.