Секреты цветных бактерий: фотосинтез и его особенности


Бактерии появились на Земле около трех с половиной миллиардов лет назад и миллиард лет были единственной формой жизни на нашей планете. Их строение является одним из наиболее примитивных, однако существуют виды, имеющие ряд существенных улучшений в своей структуре. Например, фотосинтез бактерий, которые также называются синезелеными водорослями, аналогичен тому, который происходит у высших растений. Грибы же не способны к фотосинтезу.

Схема фотосинтеза бактерий

Наиболее просты по строению те бактерии, которые заселяют сероводородсодержащие горячие источники и глубинные придонные отложения ила. Вершиной эволюции считается появление синезеленых водорослей, или цианобактерий.

Вопрос о том, какие из прокариот способны к синтезу, давно уже изучается специалистами-биохимиками. Именно они обнаружили, что некоторые из них способны к самостоятельному питанию. Фотосинтез бактерий похож на тот, который происходит у растений, но имеет целый ряд особенностей.

Аутотрофы и гетеротрофы

Различают две большие группы живых организмов – автотрофы, способные получать органические вещества при помощи таких процессов, как фото- и хемосинтез, и гетеротрофы, требующие для своего питания готовую органику. Большинство бактерий, а также грибы не способны к фотосинтезу, потому что не имеют в своем составе специальных пигментов для автотрофного питания. В свою очередь, гетеротрофы делятся на симбионтов, паразитов, и сапрофитов.

Аутотрофные прокариоты способны к питанию с помощью фотосинтеза, так как содержат необходимые для этого структуры. Фотосинтез таких бактерий – это способность, обеспечившая возможность существования современных гетеротрофов, таких как грибы, животные, микроорганизмы.

Интересно, что синтез у аутотрофных прокариот происходит в более длинноволновом диапазоне, чем у растений. Зеленые бактерии способны синтезировать органические вещества, поглощая свет длиной волны до 850 нм, у пурпурных, содержащих бактериохлорофилл A, это происходит при длине волны до 900 нм, а у тех, которые содержат бактериохлорофилл B, – до 1100 нм. Если сделать анализ поглощения света in vivo, то окажется, что существует несколько пиков, и находятся они в инфракрасной области спектра. Эта особенность зеленых и пурпурных бактерий дает им возможность существовать в условиях наличия только невидимых инфракрасных лучей.

Типы хемотрофов

Одной из необычных разновидностей аутотрофного питания является хемосинтез. Это процесс, в котором энергию для образования органических веществ организм получает из реакции окислительного преобразования неорганических соединений. Фото- и хемосинтез у автотрофных бактерий сходны тем, что энергия от химической реакции окисления сначала накапливается в виде АТФ и только потом передается процессу ассимиляции. К числу видов, жизнедеятельность которых обеспечивает хемосинтез, относятся следующие:

  1. Железобактерии. Существуют за счет окисления железа.
  2. Нитрифицирующие. Хемосинтез этих микроорганизмов настроен на переработку аммиака. Многие являются симбионтами растений.
  3. Серобактерии и тионобактерии. Перерабатывают соединения серы.
  4. Водородные бактерии, хемосинтез которых позволяет им при высокой температуре окислять молекулярный водород.

Бактерии, питание которых обеспечивает хемосинтез, не способны к фотосинтезу, потому что не могут использовать в качестве источника энергии солнечный свет.

Синезеленые водоросли – вершина бактериальной эволюции

Фотосинтез цианей происходит так же, как и у растений, что отличает их от других прокариот, а также грибов, поднимая на высшую степень эволюционного развития. Они являются облигатными фототрофами, так как не могут существовать без света. Однако некоторые имеют способность азотфиксации и образуют симбиозы с высшими растениями (как и некоторые грибы), сохраняя при этом способность к фотосинтезу. Недавно было обнаружено, что у этих прокариот существуют тилакоиды, обособленные от складок клеточной стенки, как у эукариот, что дает возможность сделать выводы о направлении эволюции фотосинтезирующих систем.

Сине-зеленые водоросли под микроскопом

Другими известными симбионтами цианей являются грибы. С целью совместного выживания в суровых климатических условиях они вступают в симбиотические отношения. Грибы в этой паре играют роль корней, получая из внешней среды минеральные соли и воду, а водоросли осуществляют фотосинтез, поставляя органические вещества. Водоросли и грибы, входящие в состав лишайников, не смогли бы выжить в таких условиях раздельно. Кроме таких симбионтов, как грибы, у цианей есть ещё друзья среди губок.

Немного о фотосинтезе

Фотосинтез у зеленых растений и прокариот– основа органической жизни на нашей планете. Это процесс образования сахаров из воды и углекислого газа, который происходит при помощи специальных пигментов. Именно благодаря им бактерии, колонии которых окрашены, способны к фотосинтезу. Выделяющийся в результате кислород, без которого не могут существовать животные, в данном процессе является побочным продуктом. Все грибы и многие прокариоты не способны к синтезу, потому что они не сумели в процессе эволюции обзавестись нужными для этого пигментами.

У растений фотосинтез происходит в хлоропластах. В клетках зеленых, пурпурных и цианобактерий пигменты также прикреплены к мембране. То есть синтез прокариот также происходит в специальных пузырьках, которые называются тилакоидами. Здесь же расположены системы, передающие электроны и ферменты.

Сравнивая фотосинтез прокариот и высших растений, некоторые ученые пришли к выводу, что растительные хлоропласты – не что иное, как потомки зеленых бактерий. Это симбионты, приспособившиеся к жизни внутри более развитых эукариот (клетки таких организмов, в отличие от бактериальных, имеют настоящее ядро).

Существует две разновидности фотосинтеза – оксигенный и аноксигенный. Первый наиболее распространен у растений, цианобактерий и прохлорофитов. Второй происходит у пурпурных, некоторых зеленых и гелиобактерий.

Виды фотосинтеза бактерий

Аноксигенный синтез

Происходит без выделения кислорода в окружающую среду. Он характерен для зеленых и пурпурных бактерий, которые являются своеобразными реликтами, сохранившимися до наших дней с древнейших времен. Фотосинтез всех пурпурных бактерий имеет одну особенность. Они не могут пользоваться водой, как донором водорода (это более характерно для растений) и нуждаются в веществах с более высокими степенями восстановления (органикой, сероводородом или молекулярным водородом). Синтез обеспечивает питание зеленых и пурпурных бактерий и позволяет им заселять пресные и соленые водоемы.

Оксигенный синтез

Происходит с выделением кислорода. Он характерен для цианобактерий. У этих микроорганизмов процесс проходит аналогично фотосинтезу растений. В состав пигментов у цианобактерий входят хлорофилл А, фикобилины и каротиноиды.

Этапы фотосинтеза

Происходит синтез в три этапа.

  1. Фотофизический. Происходит поглощение света с возбуждением пигментов и передачей энергии другим молекулам фотосинтезирующей системы.
  2. Фотохимический. На этом этапе фотосинтеза у зеленых или пурпурных бактерий полученные заряды разделяются и электроны переносятся по цепочке, которая завершается образованием АТФ и НАДФ.
  3. Химический. Происходит без света. Включает в себя биохимические процессы синтеза органических веществ у пурпурных, зеленых и цианобактерий с использованием энергии, накопленной на предыдущих стадиях. Например, это такие процессы, как цикл Кальвина, глюкогенез, завершающиеся образованием сахаров и крахмала.

Пигменты

Фотосинтез бактерий имеет целый ряд особенностей. Например, хлорофиллы в данном случае свои, особенные (хотя у некоторых обнаружены и пигменты, аналогичные тем, которые работают у зеленых растений).

Хлорофиллы, принимающие участие в фотосинтезе зеленых и пурпурных бактерий, сходны по своему строению с теми, которые встречаются у растений. Наиболее распространены хлорофиллы А1, C и D, встречаются также AG, А, B Основной каркас у этих пигментов имеет одинаковое строение, отличия заключаются в боковых ветвях.

Бактериальные хлорофиллы, чем они отличаются от растительных

С точки зрения физических свойств хлорофиллы растений, пурпурных, зеленых и цианобактерий представляют собой аморфные вещества, хорошо растворимые в спирте, этиловом эфире, бензоле и нерастворимые в воде. Они имеют два максимума поглощения (один в красной, а другой – в синей областях спектра) и обеспечивают максимальную эффективность фотосинтеза у обычных бактерий и цианобактерий.

Молекула хлорофилла состоит из двух частей. Магнийпорфириновое кольцо формирует гидрофильную пластинку, размещенную на поверхности мембраны, а фитол располагается под углом к этой плоскости. Он образует гидрофобный полюс и погружен в мембрану.

У сине-зеленых водорослей обнаружены также фикоцианобилины – желтые пигменты, позволяющие молекулам цианобактерий поглощать тот свет, который не используется зелеными микроорганизмами и хлоропластами растений. Именно потому максимумы поглощения у них находятся в зеленой, желтой и оранжевой частях спектра.

Все виды пурпурных, зеленых и цианобактерий содержат также желтые пигменты – каротиноиды. Их состав уникален для каждого вида прокариот, а пики поглощения света находятся в синей и фиолетовой части спектра. Они позволяют бактериям фотосинтезировать, используя свет промежуточной длины, чем улучшают их продуктивность, могут быть каналами переноса электронов, а также защищают клетку от разрушения активным кислородом. Кроме того, они обеспечивают фототаксис – движение бактерии к источнику света.

Ссылка на основную публикацию

Все статьи на сайте носят исключительно ознакомительный характер. В статьях, описывающих ту или иную болезнь, нет призыва к действию. Если Вы обнаружили у себя подобные симптомы, Вам обязательно необходимо обратиться к врачу! Самолечение может быть опасным для Вашего здоровья!

Копирование материалов с сайта возможно только при использовании прямой активной ссылки на сайт proBakterii.ru. Фото и видео материалы не являются собственностью сайта.