Уникальность зарождения органической жизни на Земле состоит в том, что в результате сложных реакций, которые природа неоднократно воспроизводила с неорганическими соединениями, возникла структура, способная сама себя повторять. Говоря современным языком – наследовать. Путь, пройденный протонами, электронами и ионами при построении сложных макромолекул сегодня пытаются воссоздать в научных лабораториях. Первыми помощниками ученых в этих опытах являются бактерии. В основе сотрудничества человека и простейших лежит то обстоятельство, что в клетках бактерий нет оформленного ядра с наследственной информацией. Их реплицирующий механизм прост и, судя по всему, является достоверной моделью первых удачных попыток природы передавать наследственные данные от одного организма другому.
Нуклеоид – замена ядру в клетке бактерии
Если упрощенно описать живую клетку, то самая простая схема будет выглядеть следующим образом: отделенное мембраной от внешнего мира пространство, наполненное внутриклеточным веществом, в котором протекают биохимические процессы, способные организовать самостоятельное размножение биоструктуры. Эта миссия является определяющей для существования органической жизни.
Передача наследственной информации может осуществляться двумя разными путями, в зависимости от устройства внутриклеточного хранилища, в котором эта информация содержится:
- У эукариотов роль такого хранилища играет оформленное ядро, которое состоит из мембраны, изолирующей ДНК от остального пространства клетки, и самой макромолекулы дезоксирибонуклеиновой кислоты, упакованной в хромосому. Ядро считается органеллой эукариотической клеточной структуры.
- В прокариотических (бактериальных) клеточных конструкциях ДНК никак не отделена от остального внутриклеточного вещества, а только компактно упаковано в нуклеоид – кольцевую хромосому с генетической информацией, выполняющую роль ядра.
Есть гипотеза, согласно которой предок оформленного эукариотического ядра – бактерия-симбионт. На заре зарождения ядерных организмов эта бактерия-симбионт стала частью прототипа эукариотической клеточной конструкции и сумела наладить эффективное сотрудничество по передаче наследственной информации.
Бактерия снабжала эукариотическую клетку при делении наследственной информацией, а в качестве вознаграждения за труд получала те питательные вещества, которые синтезировались большим эукариотом, а со временем стала ядром.
Так это было на самом деле или нет, ученым еще предстоит разобраться, а на сегодня они имеют почти полное представление о нуклеоиде бактерии и о тех функциях, которые он выполняет в бактериальной клетке.
Форма нуклеоида и его положение
Одна из основных характеристик нуклеоида – хранителя ДНК бактерии – его кольцевое строение. Однако уже сегодня, по результатам современных исследований, бактериологи различают разные формы устройства нуклеоид. Он может выглядеть как:
- бобовидное тело;
- клубок спутанных толстых веревок;
- кораллоподобная структура с ветвями, ширящимися по всему пространству микроорганизма.
Форма нуклеоида зависит от того, какие белки упаковывали макромолекулу ДНК в хромосому.
В связи с тем, что ядро в бактерии отсутствует, в процессе эволюции был создан способ крепления нуклеоида к цитоплазматической мембране. Это крепление обеспечивает быструю и надежную репликацию хромосом.
Кроме того, согласно данным последних научных исследований, ДНК в нуклеоиде бактерии не является единичной макромолекулой. В некоторых случаях нуклеоид бактерий содержит от 9 до 18 кольцевых ДНК.
Также есть данные, полученные лабораторным путем, что далеко не все ДНК, которые содержатся в прокариотах, имеют кольцевую структуру. Так, например, ДНК спирохеты бореллия (Borrelia burgdorferi), возбудителя клещевого спирохетоза, имеет линейное строение.
Все основные параметры нуклеоида, который содержит наследственную информацию бактерии, активно изучаются, и сегодня этот клеточный органоид характеризуется как:
- кольцевая структура (имеются исключения в виде линейных макромолекул);
- одиночная хромосома (имеются исключения).
Способы репликации
Репликация молекулы дезоксирибонуклеиновой кислоты напрямую связана со способом упаковки и хранения наследственной информации.
Репликация – воспроизводство дочерней ДНК по матрице родительской макромолекулы ДНК. Выделяют три основных вида:
- консервативный (без раскручивания спирали);
- полуконсервативный (родительская спираль раскручивается, и обе части являются матрицами для синтеза дочерних макромолекул);
- дисперсивный (родительская ДНК распадается на множество фрагментов, которые и берутся за основу для синтеза дочерних макромолекул).
В бактериальной клетке репликация идет по полуконсервативному пути. Раскручивание родительской молекулы происходит в результате воздействия ферментов, а по завершении процесса репликации и оформления двух нуклеоидов в теле бактериальной клетки, процесс деления входит в свою самую активную фазу.
Митохондрии
Обеспечение живой клетки энергией – ответственная миссия. Если она будет провалена, никакой речи о делении и наследстве идти не будет.
В бактерии, в которой отсутствуют специальные органеллы (митохондрии) для синтеза АТФ, энергия производится непосредственно в цитоплазме и потребляется всеми клеточными структурами.
У эукариотов совершенно другая картина. Большие клеточные конструкции не могут себе позволить пустить на самотек процесс обеспечения всех своих составляющих энергией. Именно для этих целей служит своеобразная энергетическая станция – митохондрия.
Строение митохондрии и ее роль в большой клетке с ядром – еще одно подтверждение в пользу эволюционного симбиоза бактерий, которые общими усилиями создали эукариотическую клетку.
Митохондрия также содержит ДНК с наследственной информацией, и так же, как в бактерии, эта ДНК не упакована в оформленное ядро, а покоится внутри митохондрии, в качестве двуспиральной кольцевой макромолекулы.
Независимо от того, какая деятельность по передаче наследственной информации происходит в ядре эукариота, митохондрия самостоятельно осуществляет процесс репликации собственной ДНК.
Выработка АТФ митохондрией происходит по тому же пути, что и у бактерий:
- при окислительно-восстановительных реакциях;
- в результате работы мембранного (речь идет о мембране митохондрии) АТФ-синтетазного комплекса.
Именно эти процессы являются основными при снабжении бактерии энергией, и митохондрия эукариота их дублирует.
Работаю врачом ветеринарной медицины. Увлекаюсь бальными танцами, спортом и йогой. В приоритет ставлю личностное развитие и освоение духовных практик. Любимые темы: ветеринария, биология, строительство, ремонт, путешествия. Табу: юриспруденция, политика, IT-технологии и компьютерные игры.